

Note

Synthetic potentiality of α -chloronitrone in aldehyde synthesis: A new approach

Bhaskar Chakraborty* & Manjit Singh Chhetri
Organic Chemistry Laboratory, Sikkim Govt. College
Gangtok 737 102, India

E-mail: bhaskargtk@yahoo.com

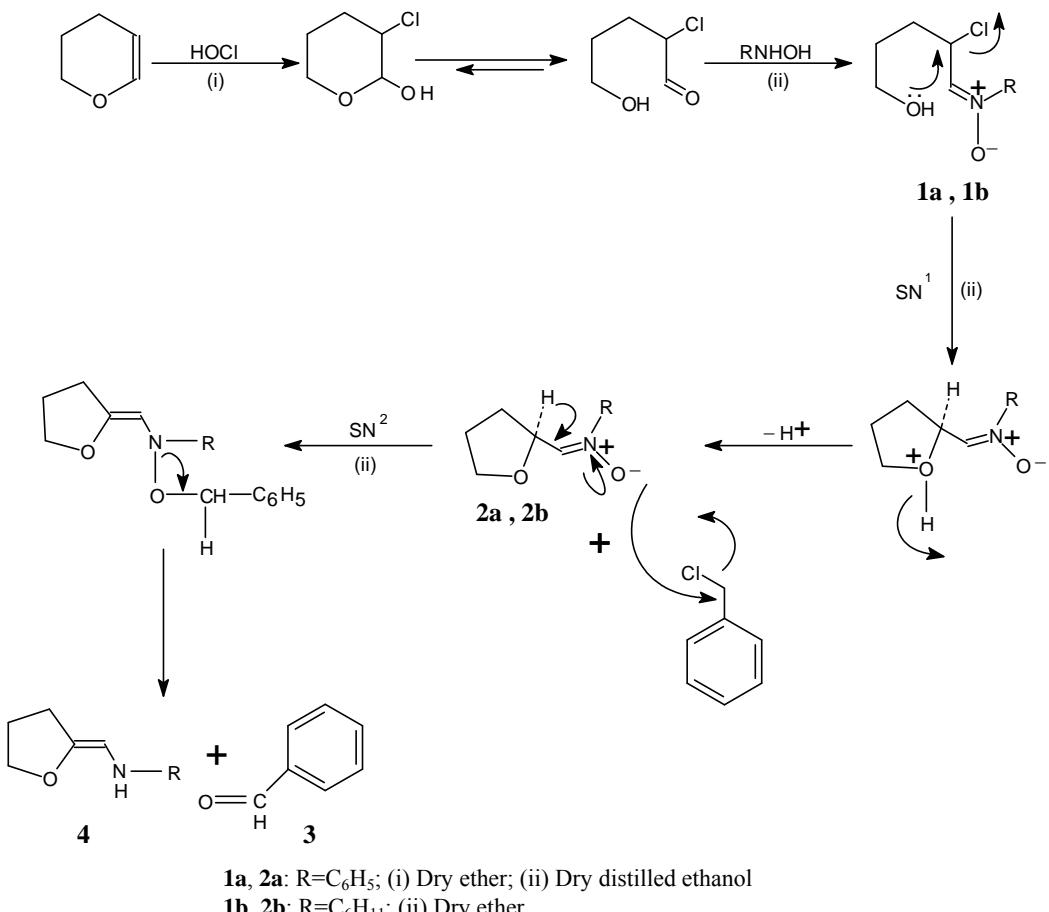
Received 9 August 2007; accepted (revised) 12 December 2007

N-Phenyl-*N*-cyclohexyl- α -chloronitrone have been synthesized and a new method of synthesis of aldehyde has been discovered involving SN^i and SN^2 reactions with benzyl chloride.

Keywords: *N*-Phenyl-*N*-cyclohexyl- α -chloronitrone, SN^2 reaction, aldehyde synthesis

The synthesis of *N*-phenyl-*N*-cyclohexyl- α -chloronitrone¹ **1a,b** and their 1,3-dipolar cycloaddition reaction with different dipolarophiles have been already established. Existing reports²⁻⁷ already describe the general method of the synthesis of the said nitrones and the cycloaddition reaction to form isoxazolidines. In the light of Eschenmoser's chloronitrone⁸ and considering the synthetic potentiality of *N*-phenyl-*N*-cyclohexyl- α -chloronitrone¹, SN^2 reaction of the nitrones with benzyl chloride have been studied. SN^2 reaction of *N*-cyclohexyl- α -amino nitrone with benzyl chloride and isopropyl bromide has been already reported⁹. The present paper reports a new method of synthesis for aldehydes using *N*-phenyl-*N*-cyclohexyl- α -chloronitrone¹. This is completely a new approach of aldehyde synthesis using nitrone as a reactive intermediate. Both the nitrones **1a,b** are synthesized from a mixture of chlorohydrin and its tautomer with *N*-phenyl-*N*-cyclohexyl hydroxylamines respectively with constant stirring for 24 hr with magnetic stirrer under N_2 atmosphere at RT where ethanol and dry ether are used as solvents. Chlorohydrin and its tautomer are obtained when 2,3-dihydro-4*H*-pyran is subjected to chlorohydration with $HOCl$ ¹⁰. *N*-Phenyl- α -chloronitrone is a yellowish white crystalline solid, m.p. 44°C, while *N*-cyclohexyl- α -chloronitrone is a white crystalline solid, m.p. 58°C. Both the nitrones are highly unstable and hence they are used immediately after their formation for the SN^2 reaction with benzyl chloride (*in situ* reaction).

The most remarkable feature of both the nitrones **1a,b** is that they undergo SN^2 reaction with benzyl chloride leading to the formation of benzaldehyde, a significant reaction in nitrone chemistry which proceeds through SN^i reaction initially and forms transient nitrones **2a,b**. A new mechanistic pathway has been suggested for the synthesis of aldehyde (**Scheme I**).


The lone pair of electrons of the OH group of the nitrones **1a,b** play the most significant role in SN^i mechanism for the formation of transient nitrones **2a,b** which reacts very quickly with benzyl chloride and results in the formation of benzaldehyde with a very good yield (72% and 63% respectively) along with furan derivative.

Experimental Section

Hand drawn silica gel (E. Merck) plates of 0.5-0.7 mm thickness are used for TLC. Silica gel (LOBA, 60-200 mesh) is used for column chromatography. Melting point is determined in open capillary tube. IR spectra are recorded as film or in solution by Perkin-Elmer 881 machine. 1H and ^{13}C NMR spectra are recorded by Bruker WM (400 MHz, FT NMR) and 79.739 MHz spectrometers respectively. Mass spectra are recorded by Jeol D-300 (CI) spectrometers. Chemical analysis are carried out on Carlo-Erba EA 1108 elemental analyzer.

Preparation of nitrones **1a,b** and benzaldehyde

N-Phenylhydroxylamine¹ (2.20 mmole) is added to a solution of chlorohydrine (1 equivalent) in dry distilled ethanol (100 mL) and is kept at RT for 24 hr with constant stirring with a magnetic stirrer under N_2 atmosphere. The formation of nitrone is monitored by TLC having R_f =0.36 (silica gel, ethyl acetate:benzene = 1:10). Benzyl chloride (1 equivalent) is added at this stage and the reaction mixture is kept for further 8 hr. Similarly *N*-cyclohexyl hydroxyl amine¹¹ (2.17 mmol) is added to a solution of chlorohydrine (1 equivalent) in dry ether (150 mL) and anhydrous $MgSO_4$ and is kept at RT for 24 hr with constant stirring with a magnetic stirrer under N_2 atmosphere. The formation of nitrone is monitored by TLC having R_f = 0.28 (silica gel, ethyl acetate:benzene = 1:10). Benzyl chloride (1 equivalent) is added at this stage

Scheme I

and the reaction mixture is kept for further 10 hr. During this process both the transient nitrones **2a,b** react very quickly with benzyl chloride and develop an intermediate compound which has a labile N-O bond and is easily cleaved¹² into benzaldehyde and furan derivatives. Two distinct spots are identified in TLC in both the reactions. For nitrone **1a** with benzyl chloride reaction, the R_f values are 0.40 and 0.56 respectively while for nitrone **1b** with benzyl chloride reaction, the R_f values are 0.44 and 0.60 respectively. The solvent is evaporated off in both the cases using vacuum pump and the products are distinguished by column chromatography (20 g silica gel column) using benzene-pet. ether (60°-80°C) as eluent. Benzaldehyde is obtained as colourless liquid using pet ether:benzene = 60:40 ratio in case of nitrone **1a** and pet ether:benzene = 80:20 ratio for nitrone **1b** while furan derivatives are obtained as yellow gummy liquids using benzene as eluent in both the cases. The structure of the nitrones **1a,b**, benzaldehyde and furan

derivatives are confirmed by ¹H and ¹³C NMR, MS and IR spectra respectively.

Considering the spectral data of compound **3** in both the cases, the formation of benzaldehyde is confirmed. The sharp singlet signals at δ 9.76, 9.80 and δ 198.6, 198 in the NMR spectrum agrees well with the structure of benzaldehyde. The molecular ion peak at 106 and the base peak at 105 are also in support of benzaldehyde.

Spectral data

Nitron **1a**: IR (CHCl₃): 3600-3530 (br), 1620 (s), 780 (s) cm⁻¹; ¹H NMR (CDCl₃): δ 7.55-7.44 (m, 5H, C₆H₅), 7.10-6.88 (d, 1H, CH=N⁺), 5.40-5.30 (br, 1H, CH₂OH, exchanged in D₂O), 4.66-4.52 (q, 1H, CHCl), 3.05-2.00 (m, 6H); ¹³C NMR (CDCl₃): δ 143 (CH=N⁺), 132, 130, 128, 126, 125, 122 (6 aromatic carbons), 96.5 (CHCl), 45, 41, 37 (3 CH₂ carbons). Anal. Found: C, 57.30; H, 9.55; N, 6.10. C₁₁H₁₄ClO₂N requires C, 57.42; H, 9.62; N, 6.22%.

Nitrone **1b:** IR (CHCl₃): 3500-3450 (br), 1680 (s), 1610 (m), 1155 (m) cm⁻¹; ¹H NMR (CDCl₃): δ 7.05-6.90 (d, 1H, CH=N⁺), 5.15-5.05 (br, 1H, CH₂OH, exchanged in D₂O), 4.30-4.15 (q, 1H, CHCl), 3.70-3.50 (m, 1H, N-CH proton), 2.60-0.5 (m, 16H); ¹³C NMR (CDCl₃): δ 142.6 (CH=N⁺), 95 (CHCl), 63.2 (CH₂OH), 53 (N-CH), 50-10 (7 signals, cyclohexyl and other CH₂ carbons). Anal. Found: C, 56.50; H, 8.52; N, 5.92. C₁₁H₂₀ClO₂N requires C, 56.53; H, 8.56; N, 5.99%.

Compound **3** (Obtained from the reaction between **1a** and benzyl chloride): IR (CHCl₃): 1695 (s), 780 (s) cm⁻¹; ¹H NMR (CDCl₃): δ 9.76 (s, 1H, CHO), 7.50-7.40 (m, 5H, C₆H₅); ¹³C NMR (CDCl₃): δ 198.6 (CHO), 137, 135, 134, 130, 126, 123 (6 aromatic carbons); MS: *m/z* 106 (M⁺), 105 (B.P), 77, 51, 28.

Compound **3** (Obtained from the reaction between nitrone **1b** and benzyl chloride): IR (CHCl₃): 1700 (s), 780(s) cm⁻¹; ¹H NMR (CDCl₃): δ 9.8 (s, 1H, CHO), 7.60-7.44 (m, 5H, C₆H₅); ¹³C NMR (CDCl₃): δ 198 (CHO), 136-120 (6 signals, 6 aromatic carbons); MS: *m/z* 106 (M⁺), 105 (B.P), 77, 51, 28.

Compound **4** (Obtained from the reaction between nitrone **1a** and benzyl chloride): IR (CHCl₃): 3050 (m), 2960 (s), 1650 (s), 1470 (m), 770 (s) cm⁻¹; ¹H NMR (CDCl₃): δ 7.60-7.48 (m, 5H, C₆H₅ protons), 4.80 (s, 1H, C=CH), 2.10-1.72 (m, 6H); ¹³C NMR (CDCl₃): δ 138, 136, 134, 130, 128, 126 (6 aromatic carbons), 112, 110 (double bonded carbons), 42, 37, 29 (3 CH₂ carbons); MS: *m/z* 175 (M⁺), 98, 92, 83, 77.

Compound **4** (Obtained from the reaction between nitrone **1b** and benzyl chloride): IR (CHCl₃): 3060-3020 (br), 2980 (m), 1650(s), 1486 (m), 1245 (s) cm⁻¹;

¹H NMR (CDCl₃): δ 4.88 (s, 1H, C=CH), 3.82-3.70 (m, 1H, N-CH proton), 2.86-1.10 (m, 16H); ¹³C NMR (CDCl₃): δ 139, 112 (2 signals, double bonded carbons), 70-16 (8 signals, cyclohexyl and furan ring carbons); MS: *m/z* 181 (M⁺), 97, 84, 83.

Acknowledgement

The authors are grateful to the University Grants Commission, Calcutta, for financial assistance and Central Drug Research Institute, Lucknow for providing all the spectral data.

References

- 1 Chakraborty B, Ph.D. Dissertation, University of North Bengal, Darjeeling, **1996**.
- 2 Chakraborty B & Ghosh A R, *Indian J Chem*, **33B**, **1994**, 1113.
- 3 Chakraborty B & Ghosh A R, *Indian J Heterocyclic Chem*, **5**, **1995**, 99.
- 4 Chakraborty B & Ghosh A R, *Indian J Heterocyclic Chem*, **6**, **1996**, 75.
- 5 Chakraborty B, *Indian J Heterocyclic Chem*, **2007** (in press).
- 6 Chakraborty B, *Indian J Heterocyclic Chem*, **6**, **1997**, 231.
- 7 Chakraborty B, *Indian J Heterocyclic Chem*, **6**, **1997**, 233.
- 8 Eschenmoser A, Kemp U M, Blatt K, Gygax P & Dasgupta T K, *Helv Chim Acta*, **55**, **1972**, 2187.
- 9 Chakraborty B, *Indian J Heterocyclic Chem*, **9**, **1999**, 79.
- 10 Fieser L F & Fieser M, *Reagents for Organic Synthesis* (John Wiley and Sons Inc, New York), **1967**, 487.
- 11 Ghosh A R, *Indian J Chem*, **23B**, **1984**, 449.
- 12 Noguchi M, Okada H, Nishimura S & Yamagata Y, *J Chem Soc Perkin Trans I*, **1999**, 185.